軟件層面,在語言層面上,ZK更友好的格式,也會帶來加速生成的過程,比如Aleo的Leo語言。再就是算法本身的優(yōu)化,雖然說有一定的優(yōu)化空間,但是要想有大的突破需要非常多的時間,畢竟牽涉到很多數學問題。
綜上來看,內存和帶寬是限制證明生成的主要瓶頸。對于顯卡來說,這里的內存指的是顯存,并不是主板上的內存,主板上的內存主要是參與CPU的計算。當然目前有些芯片技術可以打通主板上的內存和顯存,讓內存為顯存計算來用。
按照官方的設想和規(guī)劃未來在Aleo上每天的交易量都是上億美金的規(guī)模,在這樣大數據量的要求下,每時每刻都有證明需要被委托出去在極短的時間內完成證明的生產,不可能指望顯卡能解決這個問題。就像AI大模型訓練一樣,早期數據量和參數少的情況下可以用消費級顯卡,但是現在更多的都是為AI訓練設計的專用芯片和機器。
為了打破英偉達一家獨大的局面,前任全球芯片老大英特爾和多年老對手AMD對標CUDA都分別推出了OneAPI和ROCm,Linux基金會更是聯(lián)合英特爾、谷歌、高通、ARM、三星等公司聯(lián)合成立了民間號稱“反CUDA聯(lián)盟”的UXL基金會,以開發(fā)全新的開源軟件套件,讓AI開發(fā)者能夠在基金會成員的任何芯片上進行編程,試圖讓其取代CUDA,成為AI開發(fā)者的開發(fā)平臺。